
LLNL-PRES-647480
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

PSAAP II Kick-off meeting

Albuquerque, Dec 10, 2013
Rob Neely

Lawrence Livermore National Laboratory LLNL-PRES-647480

2

§  Co-design: A collaboration between vendors, hardware
architects, system software developers, domain
scientists, computer scientists, and applied
mathematicians working together to make informed
evaluations about hardware and software components
necessary for a successful transition to exascale

§  Proxy applications: The “language of co-design”. They
are simplified representations of algorithms, data motion
patterns, and coding styles used to do early evaluation
of trade-offs in the hardware and software design space

Lawrence Livermore National Laboratory LLNL-PRES-647480

3

What is Co-design?
•  Deep collaboration… (See previous slide)

How Does Co-design Work?
•  Hardware vendors provide access to future

roadmaps
•  Researchers develop new software methodologies
•  Application developers provide “proxy applications”

for open study of software requirements

How is this different from past practice?
•  Time-frame (5-10 years)
•  Co-dependence on successful HPC strategy

What are the challenges of co-design?
•  Unclassified proxy applications are required
•  Deep NDA and trust with multiple vendors

Lawrence Livermore National Laboratory LLNL-PRES-647480

4

Co-design gets more difficult the further you get from open
collaboration and the closer you get to the “truth” (particularly
with competing vendors and national security applications)

Open Co-design
•  Released Proxy

Apps

•  Open vendor
information

Unclassified,
but not open
applications

National
Security

Applications
Standard

NDA
Deep NDA

ASC concerns Vendor concerns

•  ASC : Involve staff with clearances in co-design efforts and developing
proxy apps

•  Vendor : Limit number of lab staff engaging in multiple “deep NDA”
discussions

Lawrence Livermore National Laboratory LLNL-PRES-647480

5

§  ExMatEx, CESAR, and ExaCT are ASCR-funded
co-design centers
•  2 of 3 led at NNSA labs
•  Lots of opportunity for cross-fertilization between NNSA and

Office of Science

§  Co-design centers are designed to be application-
centric
•  NNSA already has the applications, but they’re typically not

open (export controlled / classified)

§  NNSA/ASC co-design effort - NSApp CDP
•  National Security Applications (LANL / LLNL / SNL)
•  See paper at codesign.llnl.gov

Lawrence Livermore National Laboratory LLNL-PRES-647480

6

§  Support broad ranges of applications
§  > 10 packages, 10-30+ third party libraries
§  Many different spatial, temporal scales
§  Multi-language (C++, C, Fortran90, Python)
§  Variety of parallelism approaches
§  Long life-time projects with >1 million lines of

code
§  15+ years of development by large teams

(10 – 20+ FTEs)
§  Steerable / interactive interfaces
§  Algorithms tuned for minimal turn-around time

(vs. max compute efficiency)
§  How future physics model improvements will

impact compute balance between packages
is unknown Average of 60Kloc/year of additional

code to support in a representative IC

ALE3D

Source code
size over
time 900 kloc

The difficulty is compounded by continuing to deliver the programmatic mission while
addressing the challenges of next generation advanced architectures.

Lawrence Livermore National Laboratory LLNL-PRES-647480

7

Research
and

conception of
idea 1-5y

Proof of
concept
product 1-3y

Hardened
product

(suitable for
prototyping)

2-4y

Community
buy-in &

“standards” 2-4y

Re-
implement
application 4-6y

First Users /
Feedback

1-3y

Full-featured
1-5y

Validated for
Mission

1-3y

Production
use until

retirement

Research =
6 – 15 years to
fruition

Rewrite =
7 – 16 years to
replacement

Lawrence Livermore National Laboratory LLNL-PRES-647480

8

•  Gain experience with massive
scaling (Sequoia / BlueGeneQ)

•  Expose fine-grained concurrency
•  Accelerator directives
•  Application controlled resilience

and power management
•  Leverage validated code base

•  Evaluate and gain experience with
new programming models

•  “Harden” them beyond research
prototype phase

•  Determine degree of rewrite
needed (if any)

Evolve existing code bases Undertake new “from
scratch” rewrite

?

At a minimum, we
know we’re going to

have to do this. But will
it take us far enough?

New languages and a
clean slate approach
are compelling, but
can we manage the

risk?

Lawrence Livermore National Laboratory LLNL-PRES-647480

9

1) Evolve current ICs to run effectively on Sequoia
 (0 – 4 year scope)

2) Develop modular packages (evolve or rewrite) for Sequoia
and beyond

 (0 – 8 years)

3) Revolutionary approaches as basis for next generation code
 (3 – 15 years)

4) New programming models and parallelization strategies
 (5 – 20+ years)

Refurbish

Replace

Reuse

Our Challenges are not tied to the pursuit of exascale computing.
Future architectures at extreme scale (100’s of Pf) are just as demanding.

Lawrence Livermore National Laboratory LLNL-PRES-647480

10

Algorithms
• Mesh-based,

particles, solvers,
structural, CFD,
etc…

• Discretization
methods

Breadth
•  Targeted to a

specific purpose
•  Generally

representative
and multi-
purpose

Audience
• Hardware

designers
• Software

designers

Modernness
• Extraction of

existing application
• Exploration of

future application

•  One must consider a
broad range of proxy
applications to even
begin to cover the
design space of an ASC
application

•  Proxy apps are more
than just a benchmark.
They are meant to be
modified – perhaps
dramatically

•  Interoperability of
software solutions is key

Lawrence Livermore National Laboratory LLNL-PRES-647480

11

§  What is the right balance between too big to understand,
and too simple to be representative?

Small [O(1k loc)]

Pros – Easy to pick up and learn
Cons – Hard to draw general
conclusions from

Larger [O(25-75k loc)]

Pros – Likely more
representative of real applications
Cons – Some benefits are lost to
added complexity and size

Understand: Small proxy applications are often gross approximations of
reality. Be careful of the conclusions you draw!

Lawrence Livermore National Laboratory LLNL-PRES-647480

12

§  LULESH
•  Ported to 8+ programming languages – allowed an unprecedented comparison. (IPDPS

Best Paper 2012)
•  Helped influence development of Chapel, Liszt, Charm++, …
•  Used in ExMatEx co-design center to great effect in FastForward interactions

§  LCALS
•  Allowed rapid identification of optimization issues with multiple vendor compiler teams.

§  AMG / UMT / MCB / LULESH / SNAP
•  Repurposed as TN8/CORAL benchmarks (NNSA 2015-17 large scale procurements)
•  Co-design has influenced changes in how we do procurement benchmarking

§  Lassen
•  First (?) example of Charm++ used as a library component

Numerous examples of proxy apps giving students and new hires a jump start

Lawrence Livermore National Laboratory LLNL-PRES-647480

13

•  Derived from BoomerAMG in LLNL’s hypre solver library
•  Representative of implicit solves performed in large

unstructured applications
Description

•  Stresses memory bandwidth
•  Irregular communication patterns and memory accesses
•  Fine-grained threading
•  Acceleration

Characteristics /
Uses

•  C (~70k loc)
•  MPI
•  OpenMP

Language(s) /
Size

Lawrence Livermore National Laboratory LLNL-PRES-647480

14

•  Little or no real physics – just a “particle pusher”
•  Object-oriented design Description

•  Low floating point intensity, large amount of branching
•  Irregular memory and communication patterns
•  Could be used for exploration of alternatives to MPI (e.g.

PGAS), transactional memory,

Characteristics /
Uses

•  C++ (~13k loc)
•  MPI
•  OpenMP

Language(s) /
Size

Lawrence Livermore National Laboratory LLNL-PRES-647480

15

•  Front-tracking algorithm used to propagate wave-fronts and
pre-calculate arrival times

•  Work is isolated to a narrow region around the front
Description

•  Highly load-imbalanced (1D front in a 2D mesh)
•  Similar issues to sweep-based algorithms
•  Studying task-based parallelism or dynamic load balancing
•  Interoperability of MPI and other prog. models (e.g. Charm++)

Characteristics /
Uses

•  C++ (3,500 loc)
•  Charm++
•  MPI

Language(s) /
Size

Lawrence Livermore National Laboratory LLNL-PRES-647480

16

•  Unstructured mesh
•  Small in size – about 12 representative kernels
•  Ported to numerous different programming models
•  Version 2.0 released in 2013

Description

•  Unstructured mesh data structures (indirection)
•  Analysis of thread overheads in OpenMP
•  Port to various programming models

Characteristics /
Uses

•  C++ (5k loc)
•  MPI / OpenMP
•  A++, Chapel, CUDA, OpenACC, Loci, Liszt, Charm++

versions available

Language(s) /
Size

Lawrence Livermore National Laboratory LLNL-PRES-647480

17

•  Livermore Compiler Analysis Loop Suite
•  Based on classic “Livermore Loops” from the 70’s-80’s
•  ~30 representative loop kernels
•  Easy framework to extract individual loops, add new ones

Description

•  Primarily designed to work with compiler vendors on
optimizations (e.g. SIMD)

•  Multiple versions: “Raw”, “Lambda/RAJA”, cilk plus, …
•  Some loops large enough to study threading / runtimes

Characteristics /
Uses

•  C++ (4k loc)
•  OpenMP

Language(s) /
Size

Lawrence Livermore National Laboratory LLNL-PRES-647480

18

•  Includes some simpler mini-apps (Duckling, Hatchling) as well
•  Built on top of MFEM library Description

•  Coupled implicit solve methods
•  Use of abstractions in design of finite-element based apps
•  Ability to modify spatial ordering of the mesh
•  Useful to study acceleration, transactional memory, …

Characteristics /
Uses

•  C++ (46k loc)
•  OpenMP

Language(s) /
Size

Lawrence Livermore National Laboratory LLNL-PRES-647480

19

•  1D/2D tabular interpolation library
•  Builds sets of tabular data for repeated lookups
•  Basis for Equation-of-State calculations

Description

•  Designed to study memory hierarchies
•  Sharing of data between MPI processes on same node
•  Effective caching strategies for NUMA architectures
•  Threading strategies

Characteristics /
Uses

•  C (11k loc)
•  MPI driver to spawn multiple copies (no communication)

Language(s) /
Size

Lawrence Livermore National Laboratory LLNL-PRES-647480

20

•  3D Unstructure mesh advection
•  Complex data motion – fluxing of material through element

faces
•  No physics (velocities), just mesh relaxation and material flux

Description

•  Useful counterpart to LULESH for understanding ALE
(arbitrary lagrange eulerian)

•  Irregular memory accesses, lots of p2p communication
•  Element ordering, acceleration, …

Characteristics /
Uses

•  C++ (26k loc)
•  MPI
•  OpenMP (in later versions?)

Language(s) /
Size

Lawrence Livermore National Laboratory LLNL-PRES-647480

21

Proxy Type Lang LOC Description Example uses

AMG2013 Mini C++,
MPI,
OMP

75k Algebraic multi-grid. Irregular
memory and comm. Subset of
hypre solver library.

Investigating acceleration methods,
thread performance, irregular
network access patterns

Lassen Mini C++,
Charm++

3.5k Front tracking through a 2D mesh.
Work is concentrated at front,
leading to high load imbalance.

Exploring task-based programming
models and load balance strategies

LCALS Skel C++,
OMP

4k Updated “Livermore Loops”. ~30
loops in a common analysis
framework.

Compiler optimizations. Vectorization
and thread models.

LULESH
(v2.0)

Mini C++,
MPI,
OMP

5k Lagrangian hydro on arbitrary
connected hex mesh. 2.0 includes
regions, and unified ser/par source.

New programming models and
alternate languages. Overall
performance characteristics of hydro

MCB Mini C++,
MPI

13k Monte Carlo Particle transport, Low
floating point intensity. Lots of
integer and branching

Threading, transactional memory,
acceleration, irregular messaging,
PGAS

Mulard Mini C++ 46k Implicit multigroup radiation
diffusion. Built on MFEM library.

Matrix solution techniques. Finite
element abstractions.

LIP Skel C Library for doing 2D interpolation on
large tabular data

NUMA techniques. Sharing data
between MPI tasks.

LUAU Mini C++, MPI Multi-material advection on arbitrary
connected hex mesh

Impact of memory indirection,
bandwidth intensive.

UMT Mini C++, C,
F90, Py

Radiation transport. Unstructured
mesh sweep.

Interconnects (large messages).
Memory bandwidth and capacity.

http://codesign.llnl.gov

Lawrence Livermore National Laboratory LLNL-PRES-647480

22

§  Get latest
versions of
LLNL proxy
apps

§  Contact
developers

§  References
to other co-
design
efforts

Lawrence Livermore National Laboratory LLNL-PRES-647480

23

§  PSAAP centers have a unique opportunity to inject changes in
NNSA code development processes
•  Exascale is driving disruptive changes.
•  Both sides (NNSA/Univ) must push exascale research concepts into

complex applications

§  Communicating CS concepts developed at your centers
through simpler proxy apps is an effective method

§  We invite you use our proxy apps
•  Developing a DSL or other abstraction? Test it on multiple proxy apps
•  Ask us questions – don’t assume anything!
•  Communicate back your changes to us (we learn from them as well)

§  We expect to engage in co-design with you
•  We can be a conduit to the vendor community for you

